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Estimation of the direction of the coupling by conditional probabilities of recurrence
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We introduce a method to detect and quantify the asymmetry of the coupling between two interacting
systems based on their recurrence properties. This method can detect the direction of the coupling in weakly as
well as strongly coupled systems. It even allows detecting the asymmetry of the coupling in the more chal-
lenging case of structurally different systems and it is very robust against noise. We also address the problem
of detecting the asymmetry of the coupling in passive experiments, i.e., when the strength of the coupling
cannot be systematically changed, which is of great relevance for the analysis of experimental time series.
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I. INTRODUCTION

The interplay among different complex dynamical sys-
tems is a central issue in nonlinear dynamics as well as in
nonlinear time series analysis. Under certain assumptions
different types of synchronization can occur between the in-
teracting systems. This topic has been intensively studied in
the last years and has been observed in various fields, such as
physics, engineering, and biology [1,2]. In such systems it is
important not only to analyze the synchronization but also to
identify causal (drive-response) or mutual relationships.
There are three major approaches to address this problem:
state-space based methods [3-5], information theory based
methods [6,7], and methods based on the interrelations be-
tween the phases of the systems under consideration [8].

In the state-space based approach, the state vectors are
usually reconstructed by means of delay embedding [9]. The
direction of the coupling is then assessed by considering the
correspondence between neighbors in the phase spaces of the
driver and response. If there exists a functional relationship
between the driver X and the response system VY, i.e., y(t)
=W(x(t)), they are said to be generalized synchronized
[10,11]. If ¥ exists and is smooth, it follows that close states
of the driver will be mapped to close states of the response.
However, if ¥ is bijective, also close states of the response
will be mapped to close states of the driver. Therefore, if X
and Y are generalized synchronized it is, in general, impos-
sible to assess the direction of the coupling reliably and the
state-space based methods are only applicable in the nonsyn-
chronized regime [12].

There are several methods based on information theory to
determine the direction of the coupling [6,7]. They are usu-
ally applied to systems which are strongly coupled. In order
to also treat weakly coupled systems, the phases of the sig-
nals are determined beforehand, and then information theory
based indices are applied to the phases [13].

In Ref. [8], a technique based on the fitting of the func-
tional relationship between the phases of the two interacting
systems has been proposed to detect and quantify the asym-
metry in the coupling.
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Smirnov and Andrzejak have systematically compared the
phase dynamics to the state-space approach in the case of
weak directional coupling [12]. They concluded that neither
one of the approaches is generally superior and that both
approaches have difficulties in assessing the direction of the
coupling in systems which are structurally different.

In this paper, we introduce a method to uncover direc-
tional coupling. This approach is based on the recurrence
properties of both interacting systems. The concept of recur-
rence has been used to detect relationships between interact-
ing systems in [14], where the so-called synchronization
likelihood has been introduced. This method allows for a
multivariate analysis of generalized synchronization. More-
over, in [15] the concept of recurrence has been used to
quantify a weaker form of synchronization, namely phase
synchronization. Here, we extend these measures in order to
detect the direction of the coupling. The proposed method is
rather straightforward to compute, in contrast to the more
complicated information theory approaches. Furthermore, it
has the advantage that it is applicable to both weak and
strong directional coupling, as well as to structurally differ-
ent systems.

The outline of this paper is as follows: in Sec. II we
introduce measures for the analysis of the directional cou-
pling based on recurrences. In Sec. III we demonstrate the
proposed measures in some numerical examples and discuss
the choice of the parameters of the method in Sec. IV. In Sec.
V we discuss the dependence of these measures on observa-
tional noise. We consider in Sec. VI the problem of passive
experiments, where the coupling strength between the two
interacting systems cannot be varied systematically. In Sec.
VII we compare the proposed method with other existing
techniques and, finally, we give some conclusions.

II. DETECTION OF THE COUPLING DIRECTION
BY RECURRENCES

Recurrence is a fundamental property of dynamical sys-
tems. The concept of recurrence was introduced by Poincaré
[16], where he showed that the trajectory of a dynamical
system with a measure preserving flow recurs infinitely
many times to some neighborhood of a former visited state
on an invariant set in phase space. There are many different
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techniques in nonlinear dynamics which exploit the concept
of recurrence [17-19]. We concentrate on the method of re-
currence plots (RPs), introduced by Eckmann et al. to visu-
alize the behavior of dynamical systems in the phase space
[20]. They are defined by means of the recurrence matrix

R;=0(e=5-x[), ij=1,....N, 1)

where x; denotes the state of the system X at time iAt with At
being the sampling rate, & is a predefined threshold, ©(:) is
the Heaviside function, and N is the length of the trajectory
considered. The RP is obtained plotting a black dot at the
coordinates (i,j) if R; ;=1. By looking at the patterns of the
RP, one obtains at the outset a visual impression about the
dynamics of the system under consideration. In order to go
beyond the visual impression, several measures have been
proposed to quantify the patterns in the RP. They have found
numerous applications in very different kinds of systems
[21,22]. Moreover, somehow more formal relationships be-
tween the patterns obtained in RPs and main dynamical in-
variants, such as K, and D,, have been found [23]. It has also
been shown that the RP contains all necessary information to
reconstruct the underlying trajectory, at least topologically
[24].

The method of RPs has been extended to joint recurrence
plots (JRPs) to analyze the interplay of two or more dynami-
cal systems [14,25]. The JRP of X and Y is defined as fol-
lows:

JR?,(}Y =0(sx—|Ix; —fjH)@(SY_ [ly: - )7]'

), 2)

i.e., a joint recurrence occurs if the system X recurs in its
own phase space and simultaneously, the system Y recurs
also in its own phase space. Based on JRPs it is possible to
analyze different kinds of synchronization of coupled com-
plex systems [14,15,26]. In order to illustrate this, we con-
sider two rather different chaotic oscillators, namely the
Rossler system

Xl =2+X1(X2—4),
xZ=—X1—.X3,

X3 =X+ 0.45.X3, (3)
which drives the Lorenz system

yi1==10(y; = y2),
V2 =28u—y, - uys,

V3=uy, —8/3ys, 4)

by means of the variable u=x,+x,+x;. In [11] it has been
shown that the driven Lorenz system is asymptotically stable
and that both systems are in generalized synchronization.
Hence, two close neighbors in the phase space of the driver
system correspond to two close neighbors in the phase space
of the driven system [10]. This relationship is reflected very
clearly in the RPs of both systems. In Figs. 1(a) and 1(c) we
plot the trajectories in phase space of the Rossler [Eq. (3)]
and of the Lorenz system [Eq. (4)], respectively. To calculate
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FIG. 1. (a) Rossler driving system, (b) the RP of the Rossler
system (m=3,7=5), (c) the driven Lorenz system, (d) the RP of the
Lorenz system (m=7,7=5), (e) representation of the “joint” sys-
tem, and (f) the joint recurrence plot of both systems. The threshold
for the computation of the RPs has been chosen so that the recur-
rence rate (number of recurrence points divided by N?) is equal for
both systems. In this case the recurrence rate was 0.005. The equa-
tions were integrated using fourth order Runge-Kutta and the sam-
pling time was 0.2.

their corresponding RPs, we have used the third component
of each system and reconstructed the respective trajectories
in phase space using delay embedding [9] with embedding
dimension m=7 and time delay 7=5 (the time step between
two consecutive points being 0.2), since dealing with experi-
mental time series, usually only one observable of the system
is available. Even though the shapes of both attractors in the
phase space look rather different [Figs. 1(a) and 1(c)], both
RPs are very similar [Figs. 1(b) and 1(d)]. Therefore, the
joint recurrence plot [Fig. 1(f)] resembles the same recur-
rence patterns as the RPs of the single systems.

This property of joint recurrence plots has been treated in
detail in [15], where it has been used for the detection of
generalized synchronization, also in more difficult cases
where other methods, such as the mutual false nearest neigh-
bors, are not appropriate any longer. In [14] the authors have
introduced the synchronization likelihood, which is a multi-
variate measure for generalized synchronization. This mea-
sure is based on a very similar concept to the joint recurrence
matrix of Eq. (2). However, the thresholds ey and &y are not
fixed for the whole trajectories, but are dependent on time.

However, only considering the concept of joint recurrence
is not sufficient to identify which system is the driver and
which one is the response. In order to accomplish that, it is
necessary to consider conditional probabilities of recurrence.
Therefore, we propose the mean conditional probabilities of
recurrence (MCR) between two systems X and Y, which are
defined as follows:
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N
| N 1 N 2 JR?,(}Y
S j=1
Mep(YIX) = — 2 pGii) = —> ——— (5)
Ni:l Ni:l X
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J=1

and

N
1 N 1 N EJRf}Y
s> j=1
Mep(X]Y) = — ) =—> 55— 6
CR( | ) sz(xtb)l) NZ N ( )

i=1
2Rl
j=1

where p(y;|x;) is an estimate of the probability that the tra-
jectory of Y recurs to the neighborhood of y; under the con-
dition that the trajectory of X recurs to the neighborhood of x;
[p(x;|y;) is defined analogously]. One can consider these
measures as an extension of the methods presented in
[14,15].

The criterion that we use for detecting the asymmetry of
the coupling is the following:

if X drives Y, M cx(Y|X) < Mx(X|Y), (7a)

if Y drives X, M cx(X|Y) < Mx(Y]|X). (7b)

If the coupling is symmetric, then M x(X|Y)=M ~x(Y|X).

This criterion might appear counterintuitive at first, be-
cause if X is the driver, one could think that the probability
of recurrence of a state y; given that the state x; recurs is
larger than vice versa, since X is independent of Y.

A heuristic argumentation for this criterion is the follow-
ing: if X drives Y, the dimension of Y, in general, will be
larger than the dimension of X, because the evolution of Y is
determined by both the states of X and Y. Moreover, the
higher the complexity of Y, the smaller is the probability of
recurrence of y;Vi. Hence, increasing the coupling strength
from X to Y, the probability p(y;) that the trajectory of Y
recurs to the neighborhood of y; will decrease. In contrast,
the complexity of X remains constant with increasing cou-
pling strength, because the evolution of X depends only on
the states of X. Hence, the probability p(x;) that the trajectory
of X recurs to the neighborhood of x; does not change with
the coupling strength. We choose the thresholds ey and ey in
such a way that if the coupling strength is equal to zero,
(p(x))=(p(y,)). Therefore, if the coupling strength from X to
Y is larger than zero, in general p(y;) <p(x;). That implies
p(E.y)/p(X) <p(;,y)/p(y) and  hence, Mcp(Y|X)
<M cg(X]Y).

III. NUMERICAL EXAMPLES

In this section we illustrate the performance of the pro-
posed measures for the direction of the coupling by three
kinds of examples: strongly coupled systems (close to the
onset of complete synchronization), weakly coupled systems
(close to the onset of phase synchronization), and structurally
different systems. The number of data points of the trajecto-
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FIG. 2. Mean conditional probabilities of recurrence M x(X|Y)
(solid) and Mcx(Y|X) (dashed) for two unidirectionally coupled
identical (a) and nonidentical (c) Hénon maps. The system X is in
both cases the driver, and hence, M ¢x(X|Y)> M x(Y|X). For each
value of the coupling strength u, the mean value over 100 trajecto-
ries for uniformly distributed initial conditions has been computed.
In (b) and (d) we have plotted the mean value of the difference
AM cg=M x(X|Y) =M x(Y|X) over 100 trajectories and the corre-
sponding standard deviation for the identical and nonidentical
Hénon systems, respectively. The zero line is also plotted for orien-
tation (dotted-dashed-line).

ries used in each case, if not stated otherwise, is equal to
10 000 throughout the paper.

A. Strongly coupled systems

We consider two unidirectionally coupled Hénon maps,
given by the following equations

x(i+1)=1.4—x,(0)* + byx,(i),

x(i+ 1) =x,(0), (8)

for the driving system X, and

yi(i+ 1) = 14 =[x (), () + (1 = w)yi(i) ]+ byy, (i),

yali+1) = y,(i), )

for the response system Y [5], where w is the coupling
strength. We analyze both the case of identical systems
(b,=b,=0.3) and nonidentical systems (b,;=0.1, b,=0.3). To
mimic this problem for data analysis, we assume that we
have observed the two scalar time series {xl(i)}fil and
{y1(i)},. Hence, we have to reconstruct the trajectories of X
and Y in phase space [9]; this will be done by delay embed-
ding. We choose embedding dimension m=3 and time delay
7=1, but we note that the results are qualitatively the same
with other reasonable choices. The values of the thresholds
ex and ey have been chosen such that for no coupling both
mean probabilities of recurrences (p(x(i))) and {p(y(i))) are
equal to 0.01. We use 10 000 data points and compute the
indices M cx(X|Y) and M x(Y|X) in dependence on the cou-
pling strength w. The results are shown in Fig. 2.
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For two identical Hénon maps [Fig. 2(a)], the onset to
identical synchronization occurs at approximately w=0.65,
as reported in [5,7]. As expected from this, we yield for
u>0.65, Mcp(X|Y)=Mx(X|Y). Before the onset of syn-
chronization, we obtain M x(X|Y)>M x(Y|X), indicating
correctly the direction of the coupling.

On the other hand, for the nonidentical Hénon maps, the
onset to generalized synchronization occurs at approximately
n=0.4 [5]. Note that in general the detection of the direc-
tionality is only possible before the onset of synchronization.
In the case of identical synchronization, the series {x;} and
{y;} are identical and hence there is no possibility of estab-
lishing the causal relationship between X and Y just from the
data. This argument can also be extended to the case of gen-
eralized synchronization, where the systems are related by a
one-to-one function [4]. Therefore, in the case of the two
nonidentical Hénon maps the directionality parameters are
reliable for 0<u<0.4. The sharp drop of M x(Y|X)
[dashed curve in Fig. 2(c)] at approximately w=0.6 is due to
the nonmonotonic dependence of the maximum Lyapunov
exponent of the response system on the coupling strength

[5].

B. Weakly coupled systems

Now we study two nonidentical unidirectionally coupled
Lorenz systems, given by the equations

X1 =100x; = x3),
x2=40x1 — Xy — X X3,

X3=XIX2—8/3)C3, (10)

for the driver system X and

y1 =100y, = y1) + plx; = yy),
Y2=35y1 =y, = yiY2s

Y3=y1y2 = 8/3y3, (11)

for the response system Y. The equations have been inte-
grated by a fourth-order Runge-Kutta algorithm and the time
step between two consecutive points is equal to 0.03. We use
10 000 data points and assume that only the scalar variables
x3 and y; have been observed. The embedding parameters
used for the reconstruction are m=10 and 7=12. As in the
former case, the results do not depend on the details of this
choice. We have not used the optimal embedding parameters
which can be estimated by, e.g., the methods of false nearest
neighbors and the autocorrelation function, in order to show
that the results are robust with respect to different embedding
parameters [12]. We compute the directionality parameters
MCR in dependence on the coupling strength w between 0
and 10, which is before the onset of phase synchronization
[12]. The results are shown in Figs. 3(a) and 3(b). We clearly
see that M ox(X|Y)>M x(Y|X) for all computed values of
the coupling strength u, i.e., the recurrence based indices
detect the direction of the coupling correctly. The values of
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FIG. 3. Mean conditional probabilities of recurrence M x(X|Y)
(solid) and M x(Y|X) (dashed) for (a) two weakly unidirectionally
coupled nonidentical Lorenz systems. For each value of the cou-
pling strength w, the mean value over 100 trajectories for uniformly
distributed initial conditions has been computed. The system X is
the driver, and hence, M x(X|Y)>M cx(Y|X). (c) Two weakly bi-
directionally coupled stochastic Van der Pol oscillators. The cou-
pling strength from X to Y is fixed and equal to 0.03. In (b) and (d)
we have plotted the mean value of AM =M cx(X|Y)—M (Y |X)
and the corresponding standard deviation over 100 trajectories for
each system, respectively. The zero line is also plotted for orienta-
tion (dotted-dashed-line).

the thresholds ey and ey have been chosen such that for no
coupling both mean probabilities of recurrences {p(x(i))) and
(p(3(i))) are equal to 0.01. However, note that for u=0, the
values of M x(X|Y) and M x(Y|X) are larger and not equal
to 0.01, as one would expect. This is because the estimated
joint probability of recurrence is larger than (0.01)%,
due to the limited number of data used for the computation.
Nevertheless, the expected qualitative behavior, i.e.,
M cg(X|Y)>Mx(Y|X) still holds, which is the important
fact for our analysis.

The next example that we consider is a bidirectionally
coupled system, namely, two stochastic Van der Pol oscilla-
tors with slightly different mean frequencies w, and w,,

$=0.2(1 —x2)i — wix + &+ 0.03(y — x),

¥=02(1-y)y - wry + &+ ulx—y), (12)

where 0,=1.02, 0,=0.98, and §, and §, are independent
Gaussian white noise with standard deviation 0.04. This ex-
ample has been considered in [8,12]. The equations have
been integrated with the Euler scheme and the sampling time
was 0.17. The variables x and y have been used to recon-
struct the phase space with embedding dimension 10 and
delay 12, as in the former case. The thresholds ey and ey
have been chosen such that for symmetrical coupling
(p(x,))=(p(y,))=0.1. The results for the indices MCR are
shown in Figs. 3(c) and 3(d) in dependence on the coupling
strength u. For u<0.03, Mx(X|Y) <M cx(Y|X), since the
coupling is stronger from Y to X than vice versa. At the
coupling strength 0.03, we obtain M cx(X|Y)=M (Y |X), be-
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cause the coupling is symmetrical, and for w>0.03, we ob-
serve that M x(X|Y)>M x(Y|X), because the coupling
from X to Y is stronger than vice versa. Note that at w
~(.06 both oscillators become phase synchronized and the
value of M x(Y|X) increases much faster.

C. Structurally different systems

Next, we study the more challenging case of two structur-
ally different systems, namely a stochastic Van der Pol sys-
tem which drives a Rossler system. The equation of the driv-
ing system X is

jc'=0.1(1—x2)x—w)2(x+§x, (13)

where w,=0.98 and &, is Gaussian white noise with standard
deviation 0.05. The equations of the response system Y are
given by

Vi==Y2—Y3,
Yo=y1+0.15y, + ux,

y3=(y1 = 10)y;+0.2. (14)

The equations have been integrated with a Euler scheme and
the sampling time was 0.17. The phase space has been re-
constructed using the variables x and y; and embedding di-
mension 10 and delay 12. The values of the thresholds ey
and ey have been chosen as in the former cases. The curves
for MCR are shown in dependence on the coupling strength
w in Fig. 4. In this interval of values of the coupling strength
both systems are before the onset of phase synchronization
[12]. For all values of the coupling strength we obtain
M cg(X|Y)>M x(Y|X), i.e., we are able to detect the direc-
tion of the coupling also in this case.

IV. CHOICE OF THE PARAMETERS

In order to compute the indices MCR, we need to fix four
parameters: the embedding dimension m and the delay 7 for
the reconstruction of the phase space, and the thresholds ey
and ey for the computation of the recurrence matrices. As we
have mentioned in the previous section, the special choice of
the embedding parameters does not influence the results. In
Fig. 5 we show the results for the direction parameters MCR
for different choices of m and 7 for the two identical unidi-
rectionally coupled Hénon systems [Egs. (8) and (9)]. We
obtain, regardless of the choice of the embedding param-
eters, M ox(X|Y)>M x(Y|X) for all values of the coupling
strength w before the onset of synchronization. This is the
correct behavior, since the system X is the driver and Y is the
response.

With regard to the choice of the thresholds ey and ey, we
have mentioned in the previous section that they were chosen
such that the mean probabilities of recurrence for both sys-
tems at coupling strength ©=0 are equal. In this way, it is not
necessary to normalize the data x; and y; beforehand. In the
numerical examples considered in Sec. III, we chose the
mean probability of recurrence to be equal to 0.01. In order
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FIG. 4. (a) Mean conditional probabilities of recurrence
M cp(X]Y) (solid) and Mx(Y|X) (dashed) for the chaotic Rossler
system driven by the stochastic Van der Pol system. For each value
of the coupling strength w, the mean value over 100 trajectories for
uniformly distributed initial conditions has been computed. The sys-
tem X is the driver, and hence, we find M (X |Y)>M cx(Y|X). (b)
Mean value of the difference AM x=M x(X|Y)~Mx(Y|X) and
corresponding standard deviation over 100 trajectories. The zero
line is also plotted for orientation (dotted-dashed line).

to demonstrate how the results depend on this choice, we
show in Fig. 6 AM cg=M -x(X|Y)—M x(Y|X) in dependence
on the coupling strength and on the mean probability of re-
currence (labeled as “recurrence rate” in the plot) for the
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FIG. 5. Mean conditional probabilities of recurrence M -x(X|Y)
(solid) and M x(Y|X) (dashed) for two identical unidirectionally
coupled Hénon maps for different choices of the embedding param-
eters: (a) m=3, =1, (¢) m=2, 7=3, (¢) m=5, 7=1. For each value
of the coupling strength w, the mean value over 10 trajectories for
uniformly distributed initial conditions has been computed. In (b),
(d), and (f) the mean value and standard deviation over 10 trajec-
tories of the corresponding AM . are represented. The zero line is
also plotted for orientation (dotted-dashed line).
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FIG. 6. AM cg=M cp(X|Y)=M (Y |X) for two identical unidi-
rectionally coupled Hénon maps in dependence on the coupling
strength o and the mean probability of recurrence or recurrence
rate. For each value of the coupling strength u, the mean value over
10 trajectories for uniformly distributed initial conditions has been
computed.

Hénon systems, Egs. (8) and (9). As system X is the driver,
we expect that the surface AM -, takes only positive values,
which is the case in fact. Hence, we see that the estimation of
MCR does not depend crucially on the choice of the thresh-
olds ey and ey. Hence, for a rather broad range of values of
the thresholds, the direction of the coupling can be estimated
correctly.

V. INFLUENCE OF NOISE

We now study the influence of observational noise on the
MCR measures [Egs. (5) and (6)]. Therefore, we add differ-
ent levels of noise to the scalar time series {x}Y, and
{y}¥,, so that we compute the MCR indices for the series
x;=x;+yo,77; and y/=y;+yo,7,, where 7y denotes the level
of noise, o, and o, are the standard deviation of x; and y,,
respectively, and 7, and 7, are two independent realizations
of uniformly distributed random noise between -0.5 and 0.5.
Figure 7 shows the results obtained for the MCR indices for
three different values of y corresponding to 20%, 40%, and
60% of observational noise.

We observe that when the level of noise 7y increases, it
becomes more difficult to detect the asymmetry of the cou-
pling for very small values of the coupling strength u, be-
cause both curves M x(X|Y) and M x(Y|X) are almost
equal. The larger the level of noise, the stronger must be the
coupling strength in order to detect the asymmetry. Never-
theless, even with such high levels of observational noise,
the asymmetry of the coupling can still be correctly detected
for relatively small values of the coupling strength. Hence,
we conclude that the MCR indices are a rather robust mea-
sure for the detection of the asymmetry of the coupling, also
in the presence of high levels of observational noise.

VI. PASSIVE EXPERIMENTS

One crucial problem of all measures for the detection of
asymmetry of the coupling is the assessment of the signifi-
cance of the results for passive experiments, i.e., when the
coupling strength between both systems X and Y cannot be
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FIG. 7. M x(X|Y) and M x(Y|X) for two identical unidirection-
ally coupled Hénon maps contaminated by uniformly distributed
noise in dependence on the coupling strength u. (a) y=0.2, (¢) y
=0.4, (e) y=0.6. For each value of the coupling strength w, the
mean value over 10 trajectories for uniformly distributed initial
conditions has been computed. In (b), (d), and (f) the corresponding
mean value of the difference AM -, and the standard deviation over
10 trajectories are plotted. The zero line is also plotted for orienta-
tion (dotted-dashed line).

varied systematically in experiments. In such cases, we usu-
ally just have one scalar measurement sequence for each sys-
tem {x}, and {y;}Y, for a fixed coupling strength x. This is
the case in numerous situations. For example, the experimen-
tal data used in [6] to illustrate the applicability of the
method for the detection of the asymmetry of the coupling,
are time series of breath rate and instantaneous heart rate of
a sleeping human. It is very hard, if not impossible, to
change the coupling strength between the respiratory and
cardiological system of a person in a systematic way. The
authors in [4] apply their proposed method for the detection
of asymmetry of the coupling to intracranially recorded elec-
troencephalogram (EEG) data. In this case, it is also obvious
that it is not possible to change the coupling strength be-
tween different areas of the brain, in a controlled manner.
In all these cases we obtain just one value for the direc-
tionality indices and then it is not trivial to decide whether
the computed values have been obtained just by chance or
whether they are significant. In order to address this ques-
tion, we propose the following statistical test. Our null hy-
pothesis is that the two systems X and Y are independent. To
test this null hypothesis, we generate the so-called natural or
twin surrogates [27]. Suppose that we have one time series
for each system {x}Y, and {y}Y, for a fixed coupling
strength w. The natural surrogates are trajectories from the
same underlying dynamical systems X and Y with identical
coupling strength u between both of them, but starting at
different initial conditions. We denote them by {x/}}, and
{y},. If we have computed the directionality indices
M cg(x|y) and M cx(y|x) for the measured time series, we can
compare the obtained values with the distribution of
M cg(x|y®) and M x(y*|x) [29], respectively, generated from
a large number of surrogates. If both systems X and Y are
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independent, the value M ~x(x|y) will not differ significantly
from the distribution of the values M ~x(x|y*). Otherwise, we
can reject the null hypothesis, indicating that the obtained
values for the directionality indices are significant.

At this point, the following question arises naturally: deal-
ing with experimental data, one usually does not have a
model for the governing dynamics. Then, how can one gen-
erate natural surrogates? The answer to this question has
been addressed in [27], where an algorithm based on recur-
rence has been proposed to generate natural surrogates with-
out knowing the underlying equations of the system. These
recurrence based surrogates are called rwin surrogates and
have been applied in [27] to tackle the problem of passive
experiments in phase synchronization.

We now show the performance of the MCR method ap-
plying the twin surrogates test to analyze the estimation of
the asymmetry of the coupling in Egs. (8) and (9). We there-
fore generate 100 twin surrogates using the algorithm pre-
sented in [27]. We assume that we have scalar time series,
and hence, use delay embedding to reconstruct the trajectory.
We use embedding dimension m=3 and delay 7=1, as in
Sec. III. The threshold for the generation of the surrogates is
chosen to be 6=0.09 (see [27] for further details), according
to the procedure given in [28]. Summarizing, the following
steps have to be undertaken for each value of the coupling
strength

(i) Choose the significance level a.

(ii) Compute M x(x|y) and M x(y]|x).

(iii) Generate L twin surrogate time series {x/}Y, and
{y,, with j=1,...,L.

(iv) Compute M cx(x|y%) and M x(y%|x) for j=1,...,L.

(v) Compute the a-significance value based on the distri-
bution obtained in the former step.

(vi) If M g(x|y) and M g(y|x) are larger than the corre-
sponding a-significance values, reject the null hypothesis.

The results for Egs. (8) and (9) are shown in Fig. 8.

The values of M x(X|Y) and M x(Y|X) are above the
significance level in both cases for all values of the coupling
strength. Hence, the null hypothesis is correctly rejected.
Therefore, in the case that we have a passive experiment, this
procedure can be applied to assess the significance of the
results about the asymmetry of the coupling.

Note that in the case of passive experiments, we cannot
apply the criterion proposed in Sec. II to choose the thresh-
olds ey and ey, such that for coupling strength equal to zero
we have (p(x,))=(p(¥,)), because we do not know the value
of the coupling strength. Therefore, one has to apply another
criterion to choose the thresholds ey and ey. In the example
shown in Fig. 8 we have normalized the data beforehand to
have zero mean and standard deviation equal to one, and
then we have chosen exy=ey=0.1. If both interacting systems
are structurally similar, then M x(X|Y) will be approxi-
mately equal to Mx(Y|X) for coupling strength equal to
zero. However, if the interacting systems are structurally dif-
ferent, this approach might not hold anymore.

VII. COMPARISON WITH OTHER METHODS

As mentioned in the introduction, several methods have
been proposed in the literature to estimate the direction of
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FIG. 8. (a) Mean conditional probability of recurrence
M x(X|Y) (solid) and 1% significance level (dotted) for two iden-
tical Hénon maps unidirectionally coupled. (b) M x(Y|X) (dashed)
and 1% significance level (dotted) for the same system. 100 twin
surrogates have been generated to estimate the significance level.
The data have been normalized beforehand to have zero mean and
standard deviation equal to one and ey=gy=0.1.

the coupling. Most of these methods can be divided into the
following three categories: (i) methods based on a functional
relationship between the phases [8], (ii) state-space based
methods [3-5], and (iii) information theory based methods
[6,7].

(i) In order to apply the method introduced in [8], one has
to estimate first the phases of the interacting systems and
then fit a functional relationship between them. From this
function, the directionality parameters are then derived. The
main disadvantage of this method is that it is not always
possible to assign a phase to a system based on a scalar time
series, especially if the power spectrum of the signal does not
present a predominant peak (i.e., one cannot speak of a main
frequency of rotation of the system).

(ii) The state-space methods are based on the relationship
between neighbors in the respective phase spaces of the in-
teracting systems X and Y. At a first glance, these methods
might seem to be very close to the recurrence based method
introduced in this paper. However, there are some important
differences between them. For example, the computed indi-
ces in [4,5] are based on the mean distances between a cer-
tain number ¢ of nearest neighbors, i.e., they use the matrix
of distances |x;—x;| between all points of the trajectory. In
contrast, the MCR indices do not use the distance matrix
explicitly but rather the matrix of inequalities |x;—x;|<e.
Another way to express this difference is the following: in
the state-space based methods, the threshold used to compute
the neighbors is different for each point of the trajectory x;,
i.e., e=¢&(i), whereas to compute MCR the threshold is the
same for all points of the trajectory. Another important dif-
ference is that in the MCR method, once the threshold is
fixed, it remains the same for all different values of the cou-
pling strength. In contrast, in the state-space based methods,
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FIG. 9. Transfer entropy for two identical unidirectionally
coupled Hénon maps in dependence on the coupling strength x and
the threshold. For each value of the coupling strength u, the mean
value over 10 trajectories for uniformly distributed initial conditions
has been computed. Solid surface: transfer entropy from X to Y;
dashed surface: transfer entropy from Y to X.

the threshold does not only depend on the point of the tra-
jectory, but also on the coupling strength.

(iii) Actually, the MCR method is closer to the informa-
tion theory based methods, e.g., the transfer entropy [6]. In
both cases, conditional probabilities of recurrence are esti-
mated. But in the case of the transfer entropy, transition
probabilities are considered, rather than static ones. This has
the advantage of incorporating dynamical structure. The dis-
advantage compared to the MCR indices is that the number
of data points needed for the estimation is considerable, and
this might hamper the application of this method to experi-
mental time series. For example, using the same number of
data points (10 000) and the same range of values of the
threshold as with the MCR method (Fig. 6) for the analysis
of the direction of the coupling of Egs. (8) and (9), we obtain
the results for the transfer entropy as given in Fig. 9. The
transfer entropy from X to Y is represented by the solid sur-
face and the transfer entropy from Y to X by the dashed one.
Note that even though the coupling is purely unidirectional,
the transfer entropy from Y to X is larger than zero (it be-
comes only zero for coupling strength w=0.7, when syn-
chronization sets in). That means that the transfer entropy
does not detect that the coupling is purely unidirectional.
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This problem might be overcome using longer data sets. In
the case of the MCR method, a purely undirectional coupling
can be easily detected by computing the recurrence rate of
the driver in dependence on the coupling strength, which will
then be constant.

VIII. CONCLUSIONS

In this paper, we have proposed indices for the detection
of the asymmetry of the coupling between interacting sys-
tems. The quantification of the asymmetry of the coupling
can be very helpful in identifying driver-response relation-
ships, which is a relevant problem in many fields, especially
when dealing with experimental time series. The proposed
indices are based on the mean conditional probabilities of
recurrence (MCR). We have exemplified their applicability
by several numerical examples which are representative of
strong and weak coupled systems. Furthermore, we have
shown that the MCR indices can also cope with the more
challenging case of structurally different systems. We have
studied the dependence of the MCR indices on the param-
eters needed for their estimation and we have found out that
the choice of the parameters is not crucial for the correct
detection of the asymmetry of the coupling. Moreover, we
have addressed the very relevant problem of the quantifica-
tion of the direction of the coupling in passive experiments
and proposed an algorithm to assess the statistical signifi-
cance of the results. Furthermore, we have studied the influ-
ence of observational noise on our method and compared it
with other existing techniques for the detection of the asym-
metry of the coupling. The numerical examples we consid-
ered in this paper were mainly low dimensional. The appli-
cation of this technique to high-dimensional systems, as well
as to experimental time series will be addressed in a forth-
coming paper.
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